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1) The probability that an electron state is occupied is given by the Fermi function. The 
probability that a phonon is occupied is given by the Bose-Einstein distribution, which  
is: 

a) 𝑛𝑛0 = 1

𝑒𝑒
ℏ𝜔𝜔
𝑘𝑘𝐵𝐵𝑇𝑇+1

 

b) 𝒏𝒏𝟎𝟎 = 𝟏𝟏

𝒆𝒆
ℏ𝝎𝝎
𝒌𝒌𝑩𝑩𝑻𝑻−𝟏𝟏

 

c) 𝑛𝑛0 = 1

𝑒𝑒
(ℏ𝜔𝜔−𝐸𝐸𝐹𝐹)
𝑘𝑘𝐵𝐵𝑇𝑇 +1

 

d) 𝑛𝑛0 = 1

𝑒𝑒
(ℏ𝜔𝜔−𝐸𝐸𝐹𝐹)
𝑘𝑘𝐵𝐵𝑇𝑇 −1

 

e) 𝑛𝑛0 = 1

𝑒𝑒
(ℏ𝜔𝜔−𝐸𝐸𝐹𝐹)
𝑘𝑘𝐵𝐵𝑇𝑇 −2

 

Answer: b) 

The Bose-Einstein distribution formula for particles that do not obey the Pauli exclusion principle (like 
phonons) is given by: 

𝑛𝑛0 =
1

𝑒𝑒
ℏ𝜔𝜔
𝑘𝑘𝐵𝐵𝑇𝑇 − 1

 

This formula differs from the Fermi-Dirac distribution (which applies to electrons) because phonons 
are bosons, not fermions, so they can occupy the same energy state. The factor 𝑒𝑒ℏ𝜔𝜔/𝑘𝑘𝐵𝐵𝑇𝑇 − 1 in the 
denominator reflects the Bose-Einstein statistics, where ħ𝜔𝜔 is the phonon energy, kB is the Boltzmann 
constant, and T is the temperature. 

2) What is a plot of ℏ𝜔𝜔(𝑞⃗𝑞) vs. 𝑞⃗𝑞 for lattice vibrations called? 

a) The Einstein approximation. 
b) The Debye approximation. 
c) The gray approximation. 
d) The phonon dispersion. 
e) The Brillouin zone. 

Answer: d) 

The phonon dispersion relation ℏ𝜔𝜔(𝑞⃗𝑞) describes how the frequency (or energy) of phonons varies 
with their wavevector 𝑞⃗𝑞. This relation gives an idea into the vibrational properties of the lattice and 
how phonons propagate through it. 

3) How can we obtain the phonon group velocity from a plot of ℏ𝜔𝜔(𝑞⃗𝑞) vs. 𝑞⃗𝑞? 

a) The group velocity is 𝑣⃗𝑣𝑔𝑔(𝑞⃗𝑞0) = 𝜔𝜔(𝑞⃗𝑞)/𝑑𝑑𝑞⃗𝑞|𝑞𝑞�⃗ =𝑞𝑞�⃗ 0. 
b) The group velocity is 𝒗𝒗��⃗ 𝒈𝒈(𝒒𝒒��⃗ 𝟎𝟎) = 𝒅𝒅𝒅𝒅(𝒒𝒒��⃗ )/𝒅𝒅𝒒𝒒��⃗ |𝒒𝒒��⃗ =𝒒𝒒��⃗ 𝟎𝟎. 
c) The group velocity is 𝑣⃗𝑣𝑔𝑔(𝑞⃗𝑞0) = 𝜔𝜔(𝑞⃗𝑞0)𝑞⃗𝑞0. 



d) The group velocity is 𝑣𝑣𝑔𝑔(𝑞⃗𝑞0) = 𝑐𝑐. 
e) The group velocity is 𝑣𝑣𝑔𝑔(𝑞⃗𝑞0) = 𝑣⃗𝑣𝑠𝑠. 

Answer: b) 

The phonon group velocity, which represents the speed at which energy or information is transported 
by phonons, is the derivative of the phonon frequency 𝜔𝜔(𝑞⃗𝑞) with respect to the wavevector 𝑞⃗𝑞. This 
derivative 𝑣⃗𝑣𝑔𝑔(𝑞⃗𝑞0) = 𝑑𝑑𝑑𝑑(𝑞⃗𝑞)/𝑑𝑑𝑞⃗𝑞  at a specific q = q0 (Different values of q correspond to different 
vibrational modes in the lattice) gives the group velocity, indicating how fast phonons propagate 
energy at that specific wavevector. 

4) What is the biggest difference between the electron dispersion and the phonon dispersion 
of a material? 

a) The size in q-space of the Brillouin zone for phonons is smaller than the Brillouin zone 
for electrons. 

b) The size in q-space of the Brillouin zone for phonons is larger than the Brillouin zone for 
electrons. 

c) The bandwidth in energy of the phonon dispersion is much less than the bandwidth of 
the electron dispersion. 

d) The bandwidth in energy of the phonon dispersion is much greater than the bandwidth 
of the electron dispersion. 

e) For a given material, the two dispersions are identical. 

Answer: c) 

Phonon dispersion has a relatively limited energy bandwidth because it depends on lattice vibrations, 
which have lower energy scales than electronic excitations. In contrast, electron dispersion spans a 
much broader energy range because of the higher energy levels associated with electronic states in 
solids. This difference reflects the distinct nature of phonons versus electrons. 

5) Comparing the electrical conductivity to the lattice thermal conductivity, which of the 
following statements is true? 

a) The electrical conductivity can be positive or negative, but the lattice thermal 
conductivity is always positive.  

b) The lattice thermal conductivity varies over many orders of magnitude.  
c) The electrical conductivity varies over many orders of magnitude.  
d) The two are related by Wiedemann-Franz Law. 
e) The two are related by the Lorenz number. 

Answer: c) 

Electrical conductivity can vary significantly across materials, from insulators with negligible 
conductivity (low as 10−12 S/m) to metals with very high conductivity (low as 106-108 S/m). This wide 
range reflects the diversity of electronic structures and bonding types in different materials. In contrast, 
lattice thermal conductivity typically varies over a smaller range because it is governed by phonon 
transport, which is less affected by electronic band structure than electrical conductivity. 

6) For electrons, the band structure is a plot of energy, 𝐸𝐸(𝑘𝑘�⃗ ), vs. wavevector, 𝑘𝑘�⃗ . For phonons, 
the dispersion is a plot of phonon energy, ħ𝜔𝜔(𝑞⃗𝑞), vs. phonon wavevector, 𝑞⃗𝑞.  

For electrons, we often approximate the band structure with simple, parabolic bands,  



𝐸𝐸�𝑘𝑘�⃗ � =
ℏ2𝑘𝑘2

2𝑚𝑚∗  

For phonons, we can sometimes approximate the phonon dispersion with the Debye 
approximation, 

ℏ𝜔𝜔 = ℏ𝑣𝑣𝐷𝐷𝑞𝑞 

where 𝑣𝑣𝐷𝐷 is the Debye velocity (an average of the longitudinal and transverse acoustic 
velocities.) 

6a) Compute the density of states, 𝐷𝐷𝑝𝑝ℎ(ℏ𝜔𝜔), for phonons in the Debye model. 

1
Ω
𝑁𝑁𝑞𝑞𝑑𝑑𝑑𝑑 =

1
8𝜋𝜋3

× 3(4𝜋𝜋𝑞𝑞2)𝑑𝑑𝑑𝑑 = 𝐷𝐷𝑝𝑝ℎ(ℏ𝜔𝜔)𝑑𝑑(ℏ𝜔𝜔) 

In this case, there is no factor of 2 for spin, unlike in electron-related calculations where spin 
degeneracy typically introduces a factor of 2. However, we do include a factor of 3 here to 
account for the three possible polarization modes of acoustic phonons: one longitudinal 
mode and two transverse modes. 

ℏ𝜔𝜔 = ℏ𝑣𝑣𝐷𝐷𝑞𝑞 

Given by the question, this is the linear dispersion relation for acoustic phonons in the Debye 
model, where 𝑣𝑣𝐷𝐷 is the Debye velocity. By solving q in terms of ℏ𝜔𝜔, we can rewrite 𝑞𝑞2 as 
following. 

𝑞𝑞2 = (
ℏ𝜔𝜔
ℏ𝑣𝑣𝐷𝐷

)2 

This relation is derived by differentiating the dispersion relation. 

𝑑𝑑𝑑𝑑 =
𝑑𝑑(ℏ𝜔𝜔)
ℏ𝑣𝑣𝐷𝐷

 

By substituting 𝑞𝑞2  and 𝑑𝑑𝑑𝑑  from equations (3) and (4), we can express 𝐷𝐷𝑝𝑝ℎ(ℏ𝜔𝜔)  as a 
function of ℏ𝜔𝜔. 

𝐷𝐷𝑝𝑝ℎ(ℏ𝜔𝜔)𝑑𝑑(ℏ𝜔𝜔) =
3

2𝜋𝜋2
𝑞𝑞2𝑑𝑑𝑑𝑑 =

3
2𝜋𝜋2

(
ℏ𝜔𝜔
ℏ𝑣𝑣𝐷𝐷

)2
𝑑𝑑(ℏ𝜔𝜔)
ℏ𝑣𝑣𝐷𝐷

 

𝐷𝐷𝑝𝑝ℎ(ℏ𝜔𝜔) =
3(ℏ𝜔𝜔)2

2𝜋𝜋2(ℏ𝑣𝑣𝐷𝐷)3
  

6b) Compute the distribution of channels, 𝑀𝑀𝑝𝑝ℎ(ℏ𝜔𝜔), for phonons in the Debye model. 

𝑀𝑀𝑝𝑝ℎ(ℏ𝜔𝜔) =
ℎ
2
〈𝑣𝑣𝑧𝑧+〉𝐷𝐷𝑝𝑝ℎ(ℏ𝜔𝜔) 

To compute the distribution of channels 𝑀𝑀𝑝𝑝ℎ(ℏ𝜔𝜔) for phonons, we start with the definition 
above. In the Debye model, the phonon velocity 𝑣𝑣(ℏ𝜔𝜔) is approximated as a constant 𝑣𝑣𝐷𝐷, 
the Debye velocity.  

𝑣𝑣(ℏ𝜔𝜔) = 𝑣𝑣𝐷𝐷 

When averaging over all angles in three dimensions, the average component of velocity along 
one direction (e.g., z-axis) is 𝑣𝑣𝐷𝐷/2. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) [J-1-m-3] 

(7) 

(8) 



〈𝑣𝑣𝑧𝑧+〉 =
𝑣𝑣𝐷𝐷
2

 

We substitute 𝐷𝐷𝑝𝑝ℎ(ℏ𝜔𝜔) and 〈𝑣𝑣𝑧𝑧+〉 in Eq. (7) by Eq. (6) and Eq. (9). 

𝑀𝑀𝑝𝑝ℎ(ℏ𝜔𝜔) =
ℎ
2
〈𝑣𝑣𝑧𝑧+〉𝐷𝐷𝑝𝑝ℎ(ℏ𝜔𝜔) =

ℎ
2
𝑣𝑣𝐷𝐷
2

3(ℏ𝜔𝜔)2

2𝜋𝜋2(ℏ𝑣𝑣𝐷𝐷)3
=
ℏ𝑣𝑣𝐷𝐷

2
3(ℏ𝜔𝜔)2

2𝜋𝜋(ℏ𝑣𝑣𝐷𝐷)3
 

𝑀𝑀𝑝𝑝ℎ(ℏ𝜔𝜔) =
3(ℏ𝜔𝜔)2

4𝜋𝜋(ℏ𝑣𝑣𝐷𝐷)2
 

 

(9) 

(10) 

(11) 


